Equivariant vector fields on spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Fields on Spheres

This paper presents a solution to the problem of finding the maximum number of linearly independent vector fields that can be placed on a sphere. To produce the correct upper bound, we make use of K-theory. After briefly recapitulating the basics of K-theory, we introduce Adams operations and compute the K-theory of the complex and real projective spaces. We then define the characteristic class...

متن کامل

Vector Fields on Spheres

In this paper we will address the question of how many nonvanishing, linearly independent tangent vector fields can exist on a sphere Sn−1 ⊆ R. By this we mean the following, a tangent vector field on Sn−1 = {x ∈ R : ‖x‖ = 1} is a map v : Sn−1 → R such that v(x) ⊥ x for all x ∈ Sn−1. However, by assumption v is nonvanishing, so we can normalize such that ‖v(x)‖ = 1 and we obtain a map v : Sn−1 ...

متن کامل

Homology of Equivariant Vector Fields

Let K be a compact Lie group. We compute the abelianization of the Lie algebra of equivariant vector fields on a smooth K-manifold X . We also compute the abelianization of the Lie algebra of strata preserving smooth vector fields on the quotient X/K.

متن کامل

Instability of Hopf vector fields on Lorentzian Berger spheres

In this work, we study the stability of Hopf vector fields on Lorentzian Berger spheres as critical points of the energy, the volume and the generalized energy. In order to do so, we construct a family of vector fields using the simultaneous eigenfunctions of the Laplacian and of the vertical Laplacian of the sphere. The Hessians of the functionals are negative when they act on these particular...

متن کامل

Equivariant Path Fields On

A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf’s result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown’s theorem for locally smooth G-manifolds where G is a finite group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1983

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1983-0701504-9